Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner

نویسندگان

  • Brett Ford
  • Weiwei Deng
  • Jenni Clausen
  • Sandra Oliver
  • Scott Boden
  • Megan Hemming
  • Ben Trevaskis
چکیده

An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare) Seedlings

The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare), a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in b...

متن کامل

Mapping-by-Sequencing Identifies HvPHYTOCHROME C as a Candidate Gene for the early maturity 5 Locus Modulating the Circadian Clock and Photoperiodic Flowering in Barley

Phytochromes play an important role in light signaling and photoperiodic control of flowering time in plants. Here we propose that the red/far-red light photoreceptor HvPHYTOCHROME C (HvPHYC), carrying a mutation in a conserved region of the GAF domain, is a candidate underlying the early maturity 5 locus in barley (Hordeum vulgare L.). We fine mapped the gene using a mapping-by-sequencing appr...

متن کامل

HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways

Photoperiodic flowering is a major factor determining crop performance and is controlled by interactions between environmental signals and the circadian clock. We proposed Hvlux1, an ortholog of the Arabidopsis circadian gene LUX ARRHYTHMO, as a candidate underlying the early maturity 10 (eam10) locus in barley (Hordeum vulgare L.). The link between eam10 and Hvlux1 was discovered using high-th...

متن کامل

EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression.

EARLY FLOWERING3 (ELF3) is a circadian clock gene that contributes to photoperiod-dependent flowering in plants, with loss-of-function mutants in barley (Hordeum vulgare), legumes, and Arabidopsis thaliana flowering early under noninductive short-day (SD) photoperiods. The barley elf3 mutant displays increased expression of FLOWERING LOCUS T1 (FT1); however, it remains unclear whether this is t...

متن کامل

Genetic and Phenotypic Variation for Flowering Time Genes in Barley (Hordeum vulgare)

Objective: Flowering Time (FT) in cereals controlled by genes that had a main factor on plant development. Methods: Genetic and phenotypic diversity of four flowering time genes (FT2, FT3, FT4, Ppd-H1) in 19 genotypes of cultivated and wild barley was evaluated and a total of 107 alleles were amplified. Genotypes based on days to flowering time and molecular data were grouped into earl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2016